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Recent work by Gál and March has been concerned with a model
two-electron atom in which electron-nuclear Coulomb attraction
is replaced by harmonic confinement. Furthermore, the interfermion
interaction u(r12) between electrons at separation r12 is taken to be of
inverse square form �=r212: With these model simplifications, it then proves
possible to obtain an exact analytical expression for the ground-state
energy density functional. Turning to current usage of density functional
theory of inhomogeneous Fermion liquids, in terms of a one-body potential
V(r), the single-particle (s) kinetic energy functional Ts[n] is next consid-
ered, for the experimentally interesting case of ultracold Fermion vapours
which are magnetically trapped. This is again the case of harmonic
confinement. Results for Ts[n] for different dimensionalities have been
obtained analytically for such systems and are summarized. The intimate
relationship between this kinetic energy Ts and the exchange energy Ex is
then exhibited, the off-diagonal density, or idempotent Dirac density
matrix now being invoked. In turn this latter quantity can be related to the
ground-state density n(r) via a partial differential equation. Finally, some
brief discussion is given of the, as yet unsolved, problem of the
electron–electron correlation energy.

Keywords: density functional theory; inhomogeneous electron liquids

1. Background and outline

The forerunner of modern density functional theory (DFT) was the semi-classical
method introduced independently more than eight decades ago by Thomas [1]
and Fermi [2]. This method, of course approximate, can be considered as based on an
energy functional ETF[n] of the ground-state electron density n(r) having the form [3]

ETF½n� ¼ ck

Z
nðrÞ
� �5

3drþ

Z
nðrÞVextðrÞdrþ

1
2e

2

Z
nðrÞnðr0Þ

r� r0j j
dr dr0: ð1:1Þ

Writing the variation principle in the form

� ETF �N�½ � ¼ 0, ð1:2Þ
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where the variation � is with respect to the density n(r) in Equation (1.1), N is
the total number of electrons while � is the chemical potential which is constant
everywhere in the inhomogeneous electron distribution of density n(r).
This ground-state density n(r) can be determined self-consistently.

Dirac [4] added exchange to the TF energy (1.1) to obtain the TDF
approximation

ETFD½n� ¼ ETF½n� � cx

Z
nðrÞ
� �4

3 dr, ð1:3Þ

and again the variational principle can be utilized to find the self-consistent
ground-state density.

In this Thomas-Fermi-Dirac (TFD) theory, the constants ck and cx appearing
in Equations (1.1) and (1.3), respectively, are determined from the theory of the
homogeneous electron gas (HEG) as

ck ¼
3h2

10m

3

8�

� �2=3

ð1:4Þ

and

cx ¼ e2
3

4

� �
3

�

� �1=3

: ð1:5Þ

Electron correlation being a formidable problem was clear from the fact that it took
half a century from Dirac’s work yielding the exchange energy in Equation (1.3)
from the HEG used locally to the quantum Monte Carlo solution of this same HEG
model for correlation energy, carried out by Ceperley and Alder [5]. No elegant
analytic form of the correlation energy density �c(r) comparable to the Dirac
exchange form �cx{n(r)}

4/3 has as yet emerged. But as with kinetic and exchange in
Equations (1.1) and (1.3), respectively, �c� �c[n(r)] in this local density description.
The resulting energy functional has still the merit of universality.

However, it soon became clear, as summarized in detail in the writer’s book [3],
that the really serious approximation in this local density theory was in the TF
kinetic energy ck

R
{n(r)}5/3dr, and that a return to symmetrised Hartree-like orbital

equations offered a quantitative way forward.
Nevertheless, it is highly desirable for the future to return to orbital-free DFT

as in the TFD method, but avoiding, of course, the too-drastic local density
approximation of that latter approach. It is the purpose of the present article
to stress some pointers towards a future orbital-free DFT.

The outline of the present study is then as follows. In Section 2, a model
two-electron atom is treated in which an exact analytical expression, due to Gál and
March has been obtained. Then, in Section 3, we return to the single-particle kinetic
energy functional Ts[n], given in the TF method by ck

R
{n(r)}5/3dr as in Equation

(1.1). Ts[n] is exhibited for the important case studied experimentally of harmonically
confined ultracold Fermion vapours. In Section 4, the idempotent Dirac density
matrix, essentially the off-diagonal generalisation of the ground-state density n(r),
is the focal point. This is shown to lead to a formally exact integral equation to solve
for the exchange-only potential of DFT, namely Vx(r). Section 5 considers the form
of the partial differential equation for the Dirac density matrix in terms of
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the diagonal ground-state density n(r). Section 6 then deals with some fairly general
considerations relating to correlation energy in DFT: the outstanding unsolved
problem at the time of writing. The article concludes with Section 7 which constitutes
a summary, plus some proposals for future studies which should prove fruitful.

2. A two-electron spin-compensated ‘model atom’ for which the ground-state is

known analytically

We move from the ground-state statistical method of TFD, completed in 1930, to the
case of a ‘model atom’. Ideally (see also Section 2.1), we would like to consider
non-relativistic two-electron He-like atomic ions with nuclear charge Ze and there-
fore external potential �Ze2/r, together with interfermion interaction u(r12)¼ e2/r12.
Except for the large Z limit treated briefly below, this problem remains unsolved,
despite very accurate approximate treatments going back at least to Hylleraas [6].

But if one chooses a ‘model atom’ characterized by Vext(rÞ ¼
1
2kr

2
¼ 1

2m!
2r2

and u(r12)¼ � / r
2
12, then as Crandall et al. [7] demonstrated, the ground-state wave

function can be obtained analytically. Using this wave function, Capuzzi et al. [8]
quite recently derived an exact differential equation satisfied by the ground-state
Fermion density n(r), which naturally contained the harmonic force constant
k¼m!2 and the strength � of the inverse square interparticle interaction u(r12)
characterising this model atom. This equation reads

�h

4m!
rn00ðrÞ þ

�
�h

2m!
þ 3

2 r
2

�
n0ðrÞ þ r

�
3
2� �þ

2m!

�h
r2
�
nðrÞ ¼ 0, ð2:1Þ

with 2� ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m

�h2
�

q
� 1Þ, and has an exact solution in terms of hypergeometric

functions [8].
Gál and March [9] have subsequently derived an exact energy density functional

for the above model atom. The essential steps in their proof are summarized
in Appendix A, and we merely quote their result immediately below:

E ½n� ¼

Z
nðrÞVextðrÞdrþ

�h2

16m

Z
n02ðrÞ

nðrÞ
þ
r

2

n0ðrÞn00ðrÞ

nðrÞ

� �
drþ

3

16
�h!

Z
r2
n02ðrÞ

nðrÞ
�9nðrÞ

� �
dr,

ð2:2Þ

where �h! is given in terms of n(r) in Appendix A.

2.1. Parallel equation for n(r, Z) for He-like atomic ions at large atomic number Z

As already mentioned above, let us finish the present section by emphasising
the parallel between Equation (2.1), which can be regarded as the Euler–Lagrange
equation derivable, at least in principle, from the ground-state energy functional
E [n] given in Equation (2.2), and the ground-state density n(r,Z) for non-relativistic
He-like atomic ions in the limit of large Z. This quantity n(r,Z) was obtained
as Z tends to infinity in the pioneering work of Schwartz [10,11]. Subsequently
Gál et al. [12] derived the differential equation satisfied by the Schwartz
density n(r,Z) as:

P3ðrÞn
000ðrÞ þ P2ðrÞn

00ðrÞ þ P1ðrÞn
0ðrÞ þ P0ðrÞnðrÞ ¼ 0: ð2:3Þ
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This linear, third-order and homogeneous differential equation has known [12]
polynomials Pi(r) multiplying the density n(r) and its low-order derivatives. Naturally
these polynomials Pi(r) depend also on the (large) atomic number Z as a parameter.
A key aim of DFT for the He-like atomic ions is to remove the constraint of large
Z which limits the applicability of the non-relativistic Equation. (2.3).

3. A pointer towards the orbital-free single-particle kinetic energy

functional in DFT

Equation (2.2) for the ‘model 2-electron atom’ of the previous section, being exact,
evidently contains correlation kinetic energy in current DFT usage.
But Slater–Kohn–Sham orbitals [13,14] were introduced to specifically remove the
single-particle kinetic energy density functional approximation proportional
to {n(r)}5/3 made in Equation (1.1) summarising the TFD statistical method, valid
therefore in the extreme large N limit, with N the number of electrons.

3.1. Variational approach of March and Young

March and Young [15; MY] in early work, constructed variational methods based
on the first-order density matrix �(r, r0) already introduced by Dirac [4] in his study
in which exchange was added to the TF Euler equation readily obtained by
minimising Equation (1.1) with respect to the density n. To illustrate the approach
of MY [15], let us write the one-dimensional 1D ansatz:

�MYðx, x
0Þ ¼

@yðxÞ

@x

@yðx0Þ

@x0
�modelð y, y

0Þ, ð3:1Þ

where �model(x, x
0) is a chosen, known idempotent density matrix, while y(x)

is a scaling function which in turn is connected with the diagonal density. This ansatz
corrected the TF single-particle kinetic energy ‘density’ (proportional to n3(x)
in one dimension) by a term of the form introduced by von Weizsäcker [16],
to obtain the single-particle kinetic energy density functional as

tMYðxÞ ¼
N2 � 1

N2
c
ðd¼1Þ
k nðxÞð Þ

3
þ tWðxÞ, ð3:2Þ

the von Weizsäcker [16] form tW(x) being given explicitly by

tWðxÞ ¼
�h2

8m

ð@n=@xÞ2

nðxÞ
: ð3:3Þ

Equation (3.2) has the merit that it recovers the TF single-particle kinetic energy
in the limit N!1, whereas it reduces to the correct von Weizsäcker form (3.3)
for one-level occupancy (N¼ 1). The other point to be stressed concerning
Equation (3.2) is that, in contrast to the TFD form in three dimensions given
by the first term in Equation (1.3), the MY Equation (3.2) (also of course
approximate) is not universal. In current usage [17] Equation (3.2) is non-universal
because it contains explicitly the number of particles N, as well as functionals of n(x)
in this 1D example.
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With this brief background, together with a reference to the extensive discussion
in the book by Kryachko and Ludeña [18] we turn to an exact example of the
single-particle kinetic energy functional, in the case again though of harmonic
confinement, characterized by Vext(r) as

VextðrÞ ¼
1
2 kr

2
¼ 1

2m!
2r2: ð3:4Þ

It is then natural, in view of Equation (3.2), to start this example in 1D.

3.2. Harmonic confinement of independent Fermions for an arbitrary number of
closed shells in D dimensions

For D¼ 1, March et al. [19] derived the single-particle (s) kinetic energy functional
T ðDÞs ½n� as

T ð1Þs ½n� ¼ T
ð1Þ
W ½n� þ

Z 1
�1

	ðxÞtTFðxÞdx: ð3:5Þ

It was emphasized in [19] that the basic building blocks in the exact result (3.5)
are the TF result t

ð1Þ
TFðx)¼ (�2/6)n3(x)cð1Þk n3(x) and the von Weizsäcker form defined

in Equation (3.3). Here 	(x) has the form

	ðxÞ � 	ð0Þ ¼ ð3=�2Þ

Z x

0

n0ðsÞ
� �3.

n5ðxÞ
h i

dx: ð3:6Þ

The D-dimensional generalisation of Equation (3.5) was given by Howard et al.
[20]. Instead of quoting their result, let us, by way of illustration, refer to the
numerical calculations of Howard and March [21] for D¼ 2. Their findings
are summarised in Table 1 for this two dimensionality and for a variety of values for
the number of closed shells, M. We have chosen to separate T ðDÞs into the sum of
three parts:

T ðDÞs ¼ T
ðDÞ
sTF þ

1
DT
ðDÞ
W þ T ðDÞðnon-universalÞs , ð3:7Þ

using the terminology introduced above. Returning to the D¼ 1 MY variational
result (3.2) we would then write, paralleling Equation (3.7), the now

Table 1. Kinetic energy components for harmonic confinement as in Equation (3.7).

2D TTF
1
2TW Tnon-univ

Ts¼TTF þ
1
2TW

þTnon-univ

M
0 1/4 1/4 0 1/2
1 1.25 0.5193 0.7307 2.5
2 3.5 0.8132 2.6868 7
5 22.75 1.8028 20.9472 45.5
9 96.25 3.2840 92.966 192.5
14 310. 5.3029 304.6972 620

Note: *This is a modified table from Howard and March [21].
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approximate form

T
ð1Þ
sMY ¼ T

ð1Þ
TF þ T

ð1Þ
W �

1

N2
c
ðD¼1Þ
k

Z 1
�1

nðxÞ
� �3

dx, ð3:8Þ

the von Weizsäcker term having its original value motivated by the harmonic
confinement form (3.7), for D¼ 1. Evidently, the final (non-universal) term
in Equation (3.8) reduces rapidly with increasing N compared with the original
TF contribution.

4. The idempotent Dirac density matrix cs revisited

March and Young [22] utilized the so-called equation of motion for the Dirac density
matrix �s in one dimension to derive the differential form of the virial theorem.

They wrote the above equation of motion in the form, for a DFT potential V(x)
in one dimension, as

@2�sðx, x
0Þ

@x2
�
@2�sðx, x

0Þ

@x02
¼

2m

�h2
VðxÞ � Vðx0Þ
	 


�s: ð4:1Þ

Using sum and difference coordinates, MY proved the result

@tsðxÞ

@x
¼ �

1

2
nðxÞ

@V

@x
þ

�h2

8m
n000ðxÞ, ð4:2Þ

where ts(x) here corresponds to the positive definite wave function form (grad  (x))2

of the single-particle (s) kinetic energy per unit length.
Some three decades later, Holas and March [HM; 23] gave the three-dimensional

(3D) generalisation of Equation (4.2), which we shall also utilize below. However,
let us stress at this point that in 1D the MY differential virial theorem (DVT)

in Equation (4.2) allows, given the physical boundary conditions that ts(x)
at � infinity is zero, the kinetic energy per unit length to be obtained solely from
knowledge of n(x) plus, however, the one-body force �@V(x)/@x. In fact, the force
equation equivalent to Equation (4.2) evidently reads, in 1D:

�
@VðxÞ

@x
¼

2

nðxÞ

@tsðxÞ

@x
þ

�h2

4mnðxÞ
n000ðxÞ: ð4:3Þ

As HM [23] proved, it is this force equation which has a ready generalisation to 3D,
as will be discussed further below. Entering this 3D equation is the Dirac idempotent
density matrix �s(r, r

0), related to the exchange energy density �x(r) according
to Dirac [4] by

�xðrÞ ¼ �
e2

4

Z
�2s ðr, r

0Þ

r� r0j j
dr0: ð4:4Þ

For doubly occupied energy levels the idempotency condition satisfied

by the Dirac matrix �s takes the explicit form

�sðr, r
0Þ

2
¼

Z
�sðr, r

00Þ

2

� �
�sðr

00, r0Þ

2

� �
dr00: ð4:5Þ
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It will be important for what follows to emphasize the intimate connection between
exchange and kinetic energy, as pointed out especially by March and Santamaria
[24]. Explicit examples of this appear in Appendix B.

4.1. Formally exact integral equation for the exchange-only potential Vx(r)
involving the Dirac matrix cs(r, r

0)

The discussion summarized below had its motivation in the work of Della Sala
and Görling [25]. These authors started out from orbital language, with the
seemingly drastic assumption that the single Slater determinant built from
Slater–Kohn–Sham (SKS) orbitals was equal to the corresponding Hartree–Fock
(HF) determinant. It turns out that the earlier approximate study of the
exchange-only, potential based on what seemed also a drastic ‘denominator
approximation’, by Gritsenko and Baerends [26] led to precisely the same result
as in [25]. The subsequent work of Howard and March [27], which was formally
exact, completed these studies, when supplemented, as will be summarized
in Appendix C, by the work of Joubert [28].

The integral equation of Howard and March [27], the derivation of which
is referred to again in Appendix C, reads for the exchange-only potential Vx(r), which
is formally related to the total exchange energy Ex:

Ex ¼

Z
�xðrÞdr ð4:6Þ

by

VxðrÞ ¼
�Ex½n�

�nðrÞ
: ð4:7Þ

VxðrÞ ¼
2�xðrÞ

nðrÞ
þ

1

2nðrÞ

Z
dr0�sðr, r

0Þ
2Vxðr

0Þ

þ
e2

4nðrÞ

Z Z
dr0dr00

�sðr, r
0Þ�sðr, r

00Þ�sðr
00, r0Þ

r0 � r00j j

� �
þ
PðrÞ

nðrÞ
: ð4:8Þ

In Equation (4.8), P(r) was shown in [27] to satisfy the ‘sum rule’Z
PðrÞdr ¼ 0 ð4:9Þ

and its explicit form has been considered further by Joubert [28]: see also
Appendix C. The first term on the right-hand side of Equation (4.8) is the
approximation to Vx(r) proposed in the pioneering work of Slater [13], namely

VS‘
x ðrÞ ¼

2�xðrÞ

nðrÞ
, ð4:10Þ

which is determined solely by the Dirac matrix �s(r, r
0) with the (assumed) exact

ground-state density n(r) given by

�sðr, r
0Þ r0¼r ¼ nðrÞ:
 ð4:11Þ

Hence, VS‘
x ðrÞ is determined by �s(r, r

0) through Equation (4.4), as discussed
in the early works of Kleinman et al. [29,30].
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A numerical example illustrating the integral equation (4.8) has been worked
out by Howard and March [31] for the case of neon-like ions in the limit of large
atomic number Z. In this limit, �s(r, r

0) can be calculated analytically using bare
Coulomb wave functions.

4.2. Relation of single-particle kinetic energy density ts (r) to the Dirac density
matrix cs(r, r

0)

Returning to the point made above concerning the intimate relationship between
�x(r), the exchange energy density, and the single-particle kinetic energy density
ts(r) discussed briefly above, we note first that

tsðrÞ ¼
�h2

2m
rr�rr0�srr0 ðr, r

0Þ


r0¼r

: ð4:12Þ

Dawson and March [DM; 32] thus obtained the ‘von Weizsäcker-like’ result that

tsðrÞ ¼
�h2

16m

Z
rrFðr, r

0Þð Þ
2

Fðr, r0Þ
dr0, ð4:13Þ

where F is defined by

Fðr, r0Þ ¼ �2s ðr, r
0Þ: ð4:14Þ

Thus, both ts(r) and �x(r) are determined by the Dirac �s(r, r
0), satisfying the equation

of motion (compare the 1D analogue in Equation (4.1)):

r2
r �s � r

2
r0�s ¼

2m

�h2
½VðrÞ � Vðr0Þ��s, ð4:15Þ

where V(r) is the, as yet unknown, one-body potential of DFT.
Appendix B gives an explicit example of the intimate link between �x(r) and ts(r).

5. Differential equation for the Dirac density matrix cs(r, r
0), given the ground-state

electron density n(r) from diffraction experiments or quantum Monte Carlo

calculations

Equation (4.15) is the equation of motion of the idempotent Dirac density matrix �s
in terms of a one-body potential V(r). The objective of the present section is to set
down a differential equation for �s(r, r

0), given that its diagonal element �s(r, r) is
equal to the exact ground-state density n(r) of the molecule or cluster being
considered. In principle, n(r) is experimentally accessible via X-ray or electron
diffraction measurements. Another route, but presently restricted to relatively small
numbers of electrons, is via quantum Monte Carlo calculations.

For one- and two-level systems, a start has been made on the above programme
by March and Suhai [33; MS]. Thus, for He2, Be-like atomic ions, or the diatomic
molecule LiH, one must solve the MS equation

rr�sðr, r
0Þ½ �

2
�
�srr�s � rrnðrÞ

nðrÞ
þ
2�2s tsðrÞ

nðrÞ
þ 1

4nðr
0Þ
ðrrnÞ

2

nðrÞ
� 2nðr0ÞtsðrÞ ¼ 0, ð5:1Þ
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subject to the idempotency condition (4.5). The main steps in the derivation
of the above equation are recorded in Appendix D. Below, we outline a route which
removes the restriction on the level occupancy. The starting point is the force
equation for �@V(r)/@r, where V(r) is the still unknown potential of DFT [34].
This force equation was derived by HM [23], and can be viewed as the 3D
generalisation of the DVT given by March and Young [22], cited in Equation (4.2).
Rewriting this 1D result in the form (4.3) the 3D generalisation given by
HM [23] reads

�
@VðrÞ

@r
¼

zðrÞ

nðrÞ
þ

�h2

4mnðrÞ

@

@r
r2nðrÞ
� �

: ð5:2Þ

Here, the components of the vector field z(r) are defined from the kinetic energy
density tensor t�
(r) by [23]

z�ðrÞ ¼ 2
X



@t�
ðrÞ

@r

: ð5:3Þ

In turn, t�
(r) is defined from the idempotent Dirac density matrix �s(r, r
0) by

t�
ðrÞ ¼
�h2

4m

@2

@r0�r
00



�ðr, r0Þ þ
@2

@r0
@r
00
�

�ðr0, r00Þ

 !
r00¼r0¼r

: ð5:4Þ

5.1. Use of the force equation (5.3) in the equation of motion for the Dirac density
matrix cs(r, r

0)

The 3D equation of motion of the Dirac density matrix �s for a specified one-body
potential V(r) has already been cited in Equation (4.15). Dividing both sides
of Equation (4.15) by �s, and then taking the gradient of the resulting equation with
respect to the variable r yields the form

�
@VðrÞ

@r
¼ �

�h2

2m

@

@r

r2
r �s � r

2
r0�s

�s

� �
: ð5:5Þ

Inserting the HM force Equation (5.2) into Equation (5.5) gives an equation
characterized solely by the Dirac matrix �s, since this determines the vector field z(r)
entering Equation (5.2) via Equations (5.3) and (5.4). The diagonal element
�s(r, r)¼ n(r) is, of course, the essential input required, as stressed already.

To date, no application has been made of the above theory, set out here, to the
writer’s knowledge, for the first time. Appendix E proposes a possible semi-empirical
application of this theory, making use of quantum crystallography.

6. Some rather general considerations on electron correlation: mainly in neutral

atoms and atomic ions

Of course, the most difficult problem remaining currently in DFT is that of electron
correlation. Even for the non-relativistic two-electron He-like atomic ions, with
ground-state electron density n(r,Z), the only analytic results due to Schwartz [10]
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are at large Z, say 92. Gál et al. [35] discussed the kinetic correlation energy
Tcorr�Tc following from Schwartz’s work, when supplemented by the subsequent
study of Hall et al. [36]. While their result for Tc is precise, later work [37]
has discussed possible forms for the correlation kinetic energy functional Tc[n] for
these He-like atomic ions at large Z. In this two-electron context, the fully solvable
model atom considered in Section 2 also contains kinetic correlation energy,
embodied in the functional displayed in Equation (2.2).

More generally, Alonso et al. [38] have exhibited correlation energies for light
neutral atoms and for atomic ions, but using a combination of experiment and
theoretical considerations. Their principal conclusion supports the earlier findings of
March and Wind [39] for (lighter) neutral atoms that the major variable in
determining these correlation energies is the number of electrons. This might mean
that Ecorr[n]�Ec[n]¼ constant

R
n(r)dr, or alternatively that the correlation energy

functional is non-universal to an important degree i.e. Ec¼E [n,N ]. If the former
statement is useful beyond light atoms that would mean from the variational
principle of DFT that the main effect of correlation is to make a shift in the
(constant) chemical potential �. Much more work is needed, of course, in this
general area. Some recent relevant considerations on a number of important energy
density functionals in widespread usage, bearing on the validity of their respective
treatments of correlation are summarized in [40].

7. Summary and future directions

After a summary of substantial progress in treating two-electron atoms, including a
model atom in which the correlated energy density functional is now completely
known, as well as a differential equation for the exact ground-state electron density
n(r), attention has been focussed on a model form of the single-particle (s) kinetic
energy functional Ts[n]. The model considered has been motivated by experiments of
DeMarco and Jin [41] on cold Fermion vapours in magnetic traps, the latter allowing
changes in the effective dimensionality. These magnetic traps have motivated a full
D-dimensional study of independent Fermions that are harmonically confined.
In 1D, the building blocks are (i) the TF kinetic energy density proportional
to {n(x)}3 and (ii) the von Weizsäcker inhomogeneity kinetic energy density.
However, Ts[n] for this model has a non-universal component which is explicitly
known, and tends to zero relative to the TF component of Ts[n] as the level
occupancy becomes large. Numerical results for this model in 2D due to Howard
and March [21], are also briefly referred to. The universal part of Ts[n] in 2D and 3D
contains a reduction of the von Weizsäcker term by the factor D�1, leaving the 1D
case unchanged.

Considerable attention is then given to the determination of the idempotent
Dirac density matrix �s(r, r

0) [4] introduced in 1930, in which the diagonal element
�s(r, r) is fixed as the exact non-relativistic ground-state density n(r) in the molecule
under discussion. This matrix determines the exchange energy density �x(r) via
Equation (4.4). This is known analytically for one or two examples, the currently
most important being for the non-relativistic 10-electron Ne-like series of atomic ions
at large Z. While the corresponding exchange-only potential is also known for Z¼ 92
by numerical evaluation of the optimised exchange potential (OEP: [42,43]),
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its analytic determination awaits knowledge of the functional derivative �ts(r)/�n(r
0),

where ts[r] is the single-particle kinetic energy density. While the above considera-
tions on �s(r, r

0) are based on first-principles theory, Appendix E briefly sets out a
‘semi-empirical’ approach to the determination of �s(r, r

0) by means of X-ray
diffraction: an area now termed quantum crystallography (Appendix E). Further
work in this general area may lead to important progress in determining
an idempotent �s(r, r

0), which has the ‘experimental’ ground-state electron density
as its diagonal.
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[35] T. Gál, N.H. March, and Á. Nagy, Chem. Phys. Lett. 305, 429 (1999).
[36] G.G. Hall, L.L. Jones, and D. Rees, Proc. R. Soc. (London) A 283, 1393 (1965).
[37] R. Lopez-Boada, Chem. Phys. Lett. 311, 101 (2000).

[38] J.A. Alonso, N.H. March, N.A. Cordero, and A. Rubio, J. Phys. B: At. Mol. Opt. Phys.

36, 2695 (2003).
[39] N.H. March and P. Wind, Mol. Phys. 77, 791 (1992).
[40] C. Amovilli, F. Bogar, N.H. March and T. Gap, Phys. Lett. A 373, 3158 (2009).

[41] B. DeMarco and D.S. Jin, Science 285, 1703 (1999).
[42] R.T. Sharp and G.K. Horton, Phys. Rev. 90, 317 (1953).
[43] J.D. Talman and W.F. Shadwick, Phys. Rev. A 14, 36 (1976).

[44] N.H. March and R. Santamaria, Phys. Rev. A 38, 5002 (1988).
[45] I.A. Howard, N.H. March, P. Senet, and V.E. van Doren, Phys. Rev. A 62, 062512

(2000).
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Appendix A

Essential steps in establishing the energy density functional (2.2) for the model atom
with harmonic confinement and inverse square law interfermion interaction

Following Gál and March [9], we invoke the virial theorem to find that the single-particle
kinetic energy functional, Ts[n], satisfies

Ts½n� ¼ �
1

2

Z
nðrÞr � r

�Ts½n�

�nðrÞ
dr: ðA1Þ

Writing

E ½n� ¼ F ½n� þ

Z
nðrÞVextðrÞdr, ðA2Þ

it follows, paralleling Equation (A1) that

F ½n� ¼ �1
2

Z
nðrÞr �

r�F ½n�

�nðrÞ
dr: ðA3Þ

Utilising next the differential equation (2.1) of the main text, it follows after some
manipulation [9] that E [n] is given by Equation (2.2) for this model atom. It only remains
to express �h! in Equation (2.2) in terms of the interparticle strength �, or equivalently �
introduced after Equation (2.1). Then, since the explicit ground-state energy of this model is
E¼ (�þ 3)�h!, it readily follows that

�h! ¼
4

�þ 3

F ½n�R
nðrÞ

dr: ðA4Þ

Inserting Equation (2.1.4) into Equation (2.2) completes the functional E [n].
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Appendix B

Connections between kinetic and exchange energy densities

DM [32] used the idempotency condition (4.5) on the Dirac density matrix �s to obtain a form
of single-particle kinetic energy density given by

tDM
s ðrÞ ¼

�h2

16m

Z
ðrrF Þ

2

Fðr, r0Þ
dr0; ðB1Þ

where Fðr, r0Þ ¼ �2s ðr, r
0Þ: For comparison, the Dirac form (4.4) of the exchange energy density

reads

�xðrÞ ¼ �
e2

4

Z
Fðr, r0Þ

j r� r0 j
dr0: ðB2Þ

To attempt to pull Equations (B1) and (B2) together, March and Santamaria [44] defined
generalized kernels K(r, r0) and X(r, r0) of tDM

s ðrÞ and �x(r), respectively, via

tDM
s ðrÞ ¼

Z
Kðr, r0Þdr0; ðB3Þ

where

Kðr, r0Þ ¼
�h2

16m

ðrrF Þ
2

Fðr, r0Þ
ðB4Þ

and

�xðrÞ ¼

Z
Xðr, r0Þdr0, ðB5Þ

X(r, r0) being chosen explicitly from Equation (B2) to be given by

Xðr, r0Þ ¼ �
e2

4

Fðr, r0Þ

j r� r0 j
: ðB6Þ

Evidently, inserting F from Equation (B6) into Equation (B4), K(r, r0) is determined
completely by the exchange kernel X(r, r0).

A further connection between an exchange property and a functional derivative of the
kinetic energy density has been established in the work of Howard et al. [45] on the exchange
potential Vx(r) in non-relativistic 10-electron Ne-like atomic ions at large atomic number Z.
In [43], it was proved that

VxðrÞ ¼
X3
i¼1

V ðiÞx ðrÞ: ðB7Þ

V ðiÞx ðr) is given explicitly in terms of the known electron density n(r). But VðiÞx ðr) for i¼ 2 and 3
involve a functional derivative of the kinetic energy density ts of the form �ts(s)/�n(r) which
presently is not known, even though one has an explicit r space form of both ts and n.

Appendix C

Some considerations related to the closure function P(r) in the integral equation
(4.8) for the exchange-only potential Vx(r)

The assumption that P(r)¼ 0 in Equation (4.8) leads back to the approximate integral
equation derived by Della Sala and Görling [25]. This approximation P¼ 0 must therefore
be the consequence of their starting assumption that the Slater determinant of SKS orbitals
is identical to the corresponding HF determinant.
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Following the derivation of Equation (4.8) by Howard and March [27], and their proof
that P(r) satisfied the sum rule (4.9), March and Nagy [46] discussed various forms of P(r)
satisfying Equation (4.9). They emphasized especially the importance of choosing P(r) to give
back the OEP in [42] and [43].

Subsequent work by Joubert [28] has revealed some further results concerning P(r) which
may well allow more progress in this area.

Appendix D

Summary of main steps in the derivation of Equation (5.1) given by March and
Suhai [33] for one- and two-level occupancies

For one-level occupancy as in the H2 molecule or the He atom, the single-particle (s) Dirac
density matrix �s(r, r

0), with the exact ground-state density n(r) as its diagonal element, is
readily written as

�sðr, r
0Þ ¼ nðrÞ

1
2nðr0Þ

1
2: ðD1Þ

This is easily shown to satisfy the MS equation (5.1) by direct substitution.
More interesting therefore is the two-level case, appropriate say to the series of

four-electron Be-like atomic ions or the heteronuclear diatomic molecule LiH. As
demonstrated by DM [32], �s can be written in terms of the density amplitude already
entering Equation (D1), together with a phase �(r). The explicit form derived in [32] is

�sðr, r
0Þ ¼ nðrÞ

1
2nðr0Þ

1
2 cos½�ðrÞ � �ðr0Þ�: ðD2Þ

The important property of �(r) is that it is related to the ground-state density n(r) by a
non-linear pendulum-like eigenvalue equation [32]:

r2�ðrÞ þ
rnðrÞ

nðrÞ
� r�ðrÞ þ � sin 2�ðrÞ ¼ 0: ðD3Þ

The kinetic energy density ts(r) is given from Equation (D2) by

tsðrÞ ¼ twðrÞ þ
1
2 nðrÞðr�ðrÞÞ

2; ðD4Þ

where the von Weizsäcker inhomogeneity kinetic energy is known explicitly as

twðrÞ ¼
�h2

8m

ðrnðrÞÞ2

nðrÞ
: ðD5Þ

It is now a matter of fairly cumbersome manipulation to show again that, in this already quite
complex two-level case, the MS equation (5.1) is satisfied. Since ts(r) is determined via
Equation (D4) and the solution of equation (D3) for �(r) for a given n, ts(r) is determined
completely by n(r) and hence the MS equation (5.1) relates the Dirac matrix �s(r, r

0) directly to
n(r); albeit by a non-linear differential equation, which must be solved for the Dirac matrix �s
satisfying the idempotency condition (4.5).

Appendix E

Quantum crystallography as a future route to derive an idempotent Dirac density
matrix corresponding to a potential V(r) of DFT

It has become common practice among experimental crystallographers to fit their Bragg
reflection X-ray data with basis sets in common use in theoretical chemistry.

But then, as for example in the experimental data analysis on formamide by Howard [47],
the same basis set used to fit the electron density n(r) is frequently used to construct
an idempotent Dirac density matrix. Unfortunately, this is not of use in DFT: where
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the corresponding Dirac matrix �s must also satisfy Equation (5.5), as coming from a force
�@V(r)/@r generated by the DFT one-body potential V(r).

Prompted by the study of Howard [47] on formamide, Holas and March [48] have
proposed a type of least squares constraint, which ties the Dirac matrix extracted using the
quantum crystallographic procedure outlined above to the ‘force equation’ (5.5). It will
be interesting in the future to attempt to impose such a ‘potential-locality’ constraint on the
idempotent Dirac density matrix extracted from Bragg reflection X-ray data.
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